One-Sided Limits
Definition. We say the limit of f(x) is equal to L as x approaches c from the left and write lim if we can make values of f(x) arbitrarily close to L by taking x to be sufficiently close to c with x less than c.
Example 1. Evaluate the following limits based on the graph.
- Evaluate \displaystyle\lim_{x\to 2^-} f(x)
- Evaluate \displaystyle\lim_{x\to 0^-} f(x)
- Evaluate \displaystyle\lim_{x\to (-1)^-} f(x)
Definition. We say the limit of f(x) is equal to L as x approaches c from the right and write
\lim_{x\to c^+}f(x) = L
if we can make values of f(x) arbitrarily close to L by taking x to be sufficiently close to c with x greater than c.
Example 2. Evaluate the following limits based on the graph.
- Evaluate \displaystyle\lim_{x\to 2^+} f(x)
- Evaluate \displaystyle\lim_{x\to 0^+} f(x)
- Evaluate \displaystyle\lim_{x\to (-1)^+} f(x)
Two-Sided Limits
Definition. Suppose f(x) is defined on some open interval that contains c, except possibly at c itself. Then we write
\lim_{x\to c}f(x) = L
and say “the limit of f(x) equals L, as x approaches c” if we can make values of f(x) arbitrarily close to L by restricting x to be sufficiently close to c (on either side of c) but not equal to c.
\lim_{x\to c}f(x) = L \Longleftrightarrow \lim_{x\to c^-}f(x) = \lim_{x\to c^+}f(x) = L
Example 3. Evaluate the following limits based on the graph.
- Evaluate \displaystyle\lim_{x\to 2} f(x)
- Evaluate \displaystyle\lim_{x\to 0} f(x)
- Evaluate \displaystyle\lim_{x\to (-1)} f(x)
Practice Problems.
Evaluate the following limits based on the given graph.
- \displaystyle\lim_{x\to (-1)^-} f(x)=
- \displaystyle\lim_{x\to (-1)^+} f(x)=
- \displaystyle\lim_{x\to (-1)} f(x)=
- f(-1)=
- \displaystyle\lim_{x\to 0^-} f(x)=
- \displaystyle\lim_{x\to 0^+} f(x)=
- \displaystyle\lim_{x\to 0} f(x)=
- f(0)=
- \displaystyle\lim_{x\to 1^-} f(x)=
- \displaystyle\lim_{x\to 1^+} f(x)=
- \displaystyle\lim_{x\to 1} f(x)=
- f(1)=
Limit Involves Infinity
Example 4. Evaluate the following limits based on the graph.
- \displaystyle\lim_{x\to -\infty} f(x)=
- \displaystyle\lim_{x\to \infty} f(x)=
- \displaystyle\lim_{x\to (-1)^+} f(x)=
- \displaystyle\lim_{x\to (-1)^-} f(x)=
- \displaystyle\lim_{x\to 1^+} f(x)=
- \displaystyle\lim_{x\to 1^-} f(x)=
Practice Problems.
Evaluate the following limits based on the given graph.
- \displaystyle\lim_{x\to (-1)^-} f(x)=
- \displaystyle\lim_{x\to (-1)^+} f(x)=
- \displaystyle\lim_{x\to 2^-} f(x)=
- \displaystyle\lim_{x\to 2^+} f(x)=
- \displaystyle\lim_{x\to -\infty} f(x)=
- \displaystyle\lim_{x\to \infty} f(x)=