Example 1. Evaluate the following limits given the
\[ f(x) = \left\{ \begin{array}{ll} -x, & x < -2\\ \cos(3x), & -2\le x \le 1\\ \sqrt{x}, & x>1 \end{array}\right. \]
Practice Problems.
Are you able to make the connection between reading limits on a graph and evaluating limits by algebra?
If \(\displaystyle\lim_{x \to a} f(x)\) and \(\displaystyle\lim_{x \to a} g(x)\) exist, then
Example 2. Which of the above limit laws are used to evaluate the following limit? \[\displaystyle\lim_{x\to 0^+} \dfrac{3x^2\cos x - 1}{\sqrt{x} + 2}\]
At first glance, do you see why the limit laws fail in evaluating all of the following examples without any algebraic manipulation?
\(\frac{0}{0}\) is an interesting form that we will revisit at a later time with a more fancy tool. I promise.
Example 3. \(\displaystyle\lim_{x\to 3} \dfrac{x - 3}{x^2 - 9}\)
Example 4. \(\displaystyle\lim_{u\to 2} \dfrac{u^3 - 8}{u^2 - 5u + 6}\)
Example 5. \(\displaystyle\lim_{w\to 3^+} \dfrac{w^2 + w -12}{|w - 3|}\)
Example 6. \(\displaystyle\lim_{s\to 2^+} \dfrac{s^2 - 6s +8}{|2 - s|}\)
Example 7. \(\displaystyle\lim_{x\to 0} \dfrac{\sqrt{2-x} - \sqrt{2 + x}}{x}\)
Example 8. \(\displaystyle\lim_{p\to 1} \dfrac{\sqrt{p} - 1}{\sqrt{p + 3} - 2}\)
Example 9. \(\displaystyle\lim_{x\to 3} \dfrac{\frac 1 3 - \frac 1 x}{x - 3}\)
Example 10. \(\displaystyle\lim_{h\to 0} \dfrac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}\)
Suppose \(f(x) \le g(x) \le h(x)\) on a open interval containing \(x=a\), except perhaps at \(a\) where the functions may not even be defined. If \[\lim_{x \to a} f(x) = \lim_{x \to a} h(x)=L,\] for some real number \(L\), then \[\lim_{x \to a} g(x)=L.\]
Example 11. Evaluate \(\displaystyle \lim_{x\to 0} x^2\sin \left(\frac 1 x\right)\)